Technical requirements for autonomous space craft navigation using radio pulsars

Axel Jessner, MPIfR, Bonn,

jessner@mpifr-bonn.mpg.de

- 1. Determination of space-time locations, background
- 2. Radio pulsar TOA measurement principles
- 3. Radio Noise Background
- 4. Pulsar Spectrum
- 5. Pulse widths and Radio Frequency: Dispersion, Scattering, Jitter
- 6. Properties of real timing pulsars
- 7. Optimal receiver frequency and antenna sizes
- 8. Phased Array Antennas and the number of receiving elements
- 9. Data processing requirements: coherent de-dispersion
- 10. Summary and conclusions

Terrestrial Satellite Navigation

Satellite navigation is usually understood as the determination of the **4-position** (longitude, latitude, height, time) of an object from the **arrival time** of **radio signals** emitted by a number (>4) of satellites.

http://de.wikipedia.org/wiki/Globales_Navigationssatellitensystem#/media/File:GPS_Spheres.svg

http://commons.wikimedia.org/wiki/File:Galileo_sat_constallation.gif

Satellites transmit their position and time

The intersection of three spheres with radii

 $R=c(t_{rec}-t_{em})$

defines the location of the receiver.

Clock correction needs fourth satellite

Satellite Positions

Reference system: Earth

Satellite positions are regularly updated and corrected via

- precise orbit calculations
- ranging measurements

made from the earth and transmitted to the satellite

Ranging accuracies depend on time resolution δt and relative baseline accuracies $\delta b/b$

$$\delta \mathbf{R} \propto 2 \cdot \mathbf{R} \cdot \frac{\delta \mathbf{b}}{\mathbf{b}} + \frac{1}{2} \mathbf{c} \cdot \delta \mathbf{t}$$

with $\delta b/b$ becoming the dominant factor for large distances,

Example: $\delta b=1 \text{ cm}$, b=5000 km, $\delta t=1\mu \text{s}$ and $R=10 \text{ AU} \rightarrow \delta R \approx 6 \text{ km}$

Baseline effects begin to dominate when R> 0.25 AU or 37 Mill. km

Deep Space Satellite Positions

Reference system: Solar Barycentre

Satellite positions may be regularly updated and corrected via time of arrival (TOA) measurements of pulsed signals from distant beacons

Position accuracies depend only on time resolution δt

There are 7 independent variables that describe the trajectory of the spacecraft w.r.t. the solar barycentre:

- 3 spatial coordinates X,Y,Z,
- 3 velocity components V_x,V_v,V_z
- the time t

An accuracy of $\delta R=1$ km corresponds to a timing error of 3.3 μs .

For three position coordinates we require a timing accuracy of < 2 μs</p>

- ➔ for at least four pulsars
- → updated once per hour

Becker et al. 2013

Celestial Beacons

Using celestial references for navigation is not new:

•Optical emission from stars is regularly used for the control of satellite orientation in space

Pulsars have regular pulsed emissions on radio and X-ray wavelengths

pulse arrival times (TOAs) may be predicted from **ephemeris data** based on the past TOA measurements.

•Radio pulsars for satellite navigation first by Downs, G. S. :

"Interplanetary Navigation Using Pulsating Radio Sources," NASA Technical Reports **1974**

•Antenna: only three dipoles

•ν= 200 MHz, Δν=200 MHz, **t**_{int}=**24 h**

 $\Delta t = 20-60 \text{ ms}$ $\delta R = 60-180 \text{ km}$

•X-ray pulsars: Chester, T., Butman, S. (1981), I.S. Sheik et al. (2004)

- 1. Determination of space-time locations, background
- 2. Radio pulsar TOA measurement principles
- 3. Radio Noise Background
- 4. Pulsar Spectrum
- 5. Pulse widths and Radio Frequency: Dispersion, Scattering, Jitter
- 6. Properties of real timing pulsars
- 7. Optimal receiver frequency and antenna sizes
- 8. Phased Array Antennas and the number of receiving elements
- 9. Data processing requirements: coherent de-dispersion
- 10. Summary and conclusions

TOAs from received signals

Pulse arrival times are usually measured using cross-correlations between a **template profile** and the received **synchronously averaged radio profile**.

Factors Limiting TOA Precision

Signal to Noise Ratio & profile width determine TOA errors σ_t .

$$\sigma_{t} = (2 \cdot \pi \cdot \ln(2))^{-\frac{1}{4}} \cdot \sqrt{\frac{w}{\delta t} \cdot \frac{N}{S}}$$

Gaussian profile :

(Hagen et al. 2007)

- 1. S/N: → strong source, high gain antenna, low noise receiver, low gal. Noise
- 2. w: \rightarrow source with narrow pulse width

S, N, w depend strongly on frequency, requiring careful optimisation!

Determination of space-time locations, background Radio pulsar TOA measurement principles Radio Noise Background **Pulsar Spectrum** Pulse widths and Radio Frequency: Dispersion, Scattering, Jitter Properties of real timing pulsars Optimal receiver frequency and antenna sizes Phased Array Antennas and the number of receiving elements Data processing requirements: coherent de-dispersion Summary and conclusions

System Noise

In spectral flux density units (Jy):

$$S_{sys}(v) := \frac{2 \cdot k \cdot \left(T_{rec} + T_{sky}(v)\right)}{\epsilon_{ant} \cdot A_{ant}}$$

• $\varepsilon_{ant} A_{ant}$?? \rightarrow antenna size must be optimised!

- $T_{rec} \approx 100 \text{ K} (non-cryogenic!)$
- T_{sky} depends on v and celestial coordinates

Radio Sky at 408 MHz

(C.G.T. Haslam et al. 1974, MPIfR)

Noise Background Model

Contributions from

- Galactic & extra-galactic synchroton radiation (Cane 1979, Ellington 2005)
- 3 K background radiation (Planck Law)
- Quantum noise

Background noise has shallow minimum around 2 GHz.

→ favours L-Band frequencies (1-2 GHz)

Radiometric S/N

Effective r.ms. noise level per time bin δt using a receiver bandwidth Δv , with n_{per} periods and n_{pol} polarisations averaged : (Dicke, 1949)

Combining with cross correlation precision using

$$\eta = \Delta v/v, \ t_{int} = n_{per} \cdot P, \ n_{pol} = 2 \text{ as well as } S_{peak} = S \cdot (P/w)$$

yields:
$$\sigma_t \left(v, \eta, t_{int}, w, P, S\right) = \frac{1}{(2 \cdot \pi \cdot \ln(2))^4} \cdot \sqrt{\frac{w^3}{2 \cdot v \cdot \eta \cdot t_{int}P}} \cdot \frac{S_{sys}(v)}{S}$$

(Similar to Cordes & Shannon, 2010)

 $\sigma_{\text{rec}} = \frac{2 \cdot k \cdot \left(T_{\text{rec}} + T_{\text{sky}}\right)}{\epsilon_{\text{ant}} A_{\text{ant}} \sqrt{n_{\text{pol}} n_{\text{per}} \cdot \delta t \cdot \Delta v}}$

Scaling of timing precision:

$$\sigma_{t} = w_{eff} \cdot \frac{3}{2} \cdot \frac{-1}{2} \cdot \frac{S_{sys}(v)}{S_{psr}(v)} \cdot 233 \cdot \mu s$$

(for P, w in ms, S_{psr} in mJy, S_{sys} in Jy)

- 1. Determination of space-time locations, background
- 2. Radio pulsar TOA measurement principles
- 3. Radio Noise Background
- 4. Pulsar Spectrum
- 5. Pulse widths and Radio Frequency: Dispersion, Scattering, Jitter
- 6. Properties of real timing pulsars
- 7. Optimal receiver frequency and antenna sizes
- 8. Phased Array Antennas and the number of receiving elements
- 9. Data processing requirements: coherent de-dispersion
- 10. Summary and conclusions

Pulsars are weak radio sources with steep spectra

$$\mathbf{S} \propto \mathbf{v}^{\alpha_{\mathrm{p}}}$$

 $\alpha_{\mathrm{p}} \approx -1.5 \dots - 1.9$

Average Flux density of strongest pulsars at 1.4 GHz:

 \rightarrow N(v)/S(v) favours low receiver frequencies

First estimate of optimal frequency

The steep power-law spectrum of pulsars and sky background require averaging over receiver bandwidth:

$$\sigma_{t} = \frac{\frac{3}{2} \cdot p^{\frac{1}{2}} \cdot v^{\frac{-1}{2}} \cdot v^{\frac{-1}{2}} \cdot v^{\frac{-1}{2}} \cdot v^{\frac{-1}{2}} \cdot v^{\frac{-1}{2}}}{\varepsilon \cdot A_{ant}} \cdot \frac{1}{S_{1400}} \cdot \frac{1}{\eta \cdot v} \cdot \int_{v \cdot \left(1 + \frac{\eta}{2}\right)}^{v \cdot \left(1 + \frac{\eta}{2}\right)} \left(\frac{v}{1.4 \cdot \text{GHz}}\right)^{-\alpha_{p}} \cdot \left[2 \cdot k \cdot \left(T_{rec} + T_{sky}(v)\right)\right] dv$$

Although the sky background decreases significantly above 500 MHz, the steep pulsar spectrum effectively limits the TOA accuracies at higher frequencies. Function has minimum at about 300 MHz.

> Example: α_p =-1.5, ϵA_{ant} =150 m², T_{rec}=100 K, η=0.18 w=0.3 ms, P=10 ms, S₁₄₀₀=10 mJy,

Not far from Downs 1974, but far too optimistic!

Profile width dependence on frequency has been neglected

- 1. Determination of space-time locations, background
- 2. Radio pulsar TOA measurement principles
- 3. Radio Noise Background
- 4. Pulsar Spectrum
- 5. Pulse widths and Radio Frequency: Dispersion, Scattering, Jitter
- 6. Properties of real timing pulsars
- 7. Optimal receiver frequency and antenna sizes
- 8. Phased Array Antennas and the number of receiving elements
- 9. Data processing requirements: coherent de-dispersion
- 10. Summary and conclusions

Interstellar dispersion broadens pulse profiles

 $\omega_{\text{pe}} := \sqrt{\frac{n_{e} \cdot q_{e}}{m_{e} \cdot \epsilon_{0}}}$ Plasmafrequency $\mathbf{v}_{g} = \mathbf{c} \cdot \left| 1 - \left(\frac{\omega_{pe}}{\omega} \right)^{2} = \mathbf{c} \cdot \left| 1 - \frac{\mathbf{n}_{e} \cdot \mathbf{q}_{e}^{2}}{4 \cdot \pi \cdot \mathbf{m}_{e} \cdot \varepsilon_{0}} \frac{1}{v^{2}} \right| \right|$ Group velocity $\Delta t(f) = \begin{bmatrix} u & \frac{1}{1 - \left(\frac{\omega_{pe}(s)}{\omega_{p}}\right)^2} ds \approx \frac{d}{c} + \frac{1}{2} \cdot DM - \frac{q_e^2}{4 \cdot \pi^2 \cdot \epsilon_0 \cdot m_e \cdot c} \frac{1}{\sqrt{2}} \\ \frac{1}{4 \cdot \pi^2 \cdot \epsilon_0 \cdot m_e \cdot c} \frac{1}{\sqrt{2}} \end{bmatrix}$ **Light travel time** for a distance d: 0 ^ر with d

$$\Delta t_{\rm DM} \approx 4.1494 \cdot 10^{15} \cdot \rm{DM} \cdot \left(\frac{1}{v_1^2} - \frac{1}{v_2^2}\right) \rm{s}$$

Dispersion broadens this profile by 2.5 ms, but shifting the frequency channels compensates for that

De-dispersed profile at full resolution:

 $\mathrm{DM}={\textstyle\int} n_e(s)ds$

in pc cm⁻³

PSR J1713+0747 P = 4.57 ms, DM = 16

Frequency Evolution of Pulse Profiles

PHILLIPS & WOLSZCZAN

Phillips & Wolszan, 1992

→ Preference for high receiver frequencies (> 100 MHz)

Pulse Broadening by Interstellar Scattering I

On its way from the source the pulsar signal is scattered by inhomogeneities in the interstellar medium and propagates on multiple paths and acquires multiple phases.

Because of their multiple scattering the affected profiles show an exponential tail with a typical scattering timescale τ_{sc} .

Pulse scatter is frequency dependent!

Described by power law $\tau_{sc} \approx \nu^{-\beta}$ with β ranging from 3 – 4.4.

(O. Löhmer, PhD Thesis, 2002)

Pulse Broadening by Interstellar Scattering II

The broadening depends on the electron column density of the ISM expressed through the dispersion measure DM and on frequency.

Empirical fit for average pulsar (Bhat et al. 2004):

→ Preference for low DM and high receiver frequencies

Individual single pulses have very different shapes.

Only the average profile is stable.

Jitter caused by averaging over the intrinsic pulse to pulse variability.

- Proportional to pulse width w,
- Decreases with number of pulses averaged
- Decreases with frequency

$$\sigma_{J}(w_{eff}, P, t_{int}, \nu) \coloneqq 0.28 \cdot \mu s \cdot \frac{w_{eff}}{ms} \cdot \left(\frac{t_{int}}{P \cdot 10^{6}}\right)^{\frac{-1}{2}} \cdot \left(\frac{\nu}{1.4 \cdot GHz}\right)^{-0.2}$$
(Cordes & Shannon, 2001)

➔ favours short period pulsars and long integration times, small effect for long integrations

Short Overview and combination of all effects

1. S/N related effects:

- Noise background favours L-Band frequencies (1-2 GHz)
- pulsar spectrum favours low receiver frequencies

➔ Optimum for T_{rec}=100 K at 300 MHz

2. Pulse width dependencies

- Profile evolution ($\approx v^{-0.2}$) implies small preference for high receiver frequencies
- Scattering ($\approx v^{-3.9}$) gives strong preference for high frequencies, close sources
- Dispersion can be compensated
- Pulse jitter ($\approx v^{-0.2}$) is a small effect for long integrations of short period pulsars

→

all effects increase timing errors and favour higher frequencies

Final form of frequency dependence to be evaluated by averaging over bandwidth:

$$\sigma_{t} = \frac{P^{-\frac{1}{2}} \cdot \eta^{-\frac{3}{2}} \cdot v^{-\frac{3}{2}} \cdot t_{int}^{-\frac{1}{2}}}{\sqrt{2}} \cdot \left| \int_{v \cdot \left(1 + \frac{\eta}{2}\right)}^{v \cdot \left(1 + \frac{\eta}{2}\right)} \frac{S_{sys}(v) \cdot \left(w + \tau_{d}(DM, v)\right)^{\frac{3}{2}}}{S_{psr}(v)} \cdot \left(\frac{v}{1.4 \cdot GHz}\right)^{0.3} dv + \sigma_{J}\left(w, P, t_{int}, v\right)$$

- 1. Determination of space-time locations, background
- 2. Radio pulsar TOA measurement principles
- 3. Radio Noise Background
- 4. Pulsar Spectrum
- 5. Pulse widths and Radio Frequency: Dispersion, Scattering, Jitter
- 6. Properties of real timing pulsars
- 7. Optimal receiver frequency and antenna sizes
- 8. Phased Array Antennas and the number of receiving elements
- 9. Data processing requirements: coherent de-dispersion
- 10. Summary and conclusions

Properties of known good radio timing pulsars

Many ms-psr are known and used for precision timing in the search for gravitational waves.

Characteristic data for some good timing sources from ATNF Catalogue:

PSR	P (ms)	W_{5} (ms)	-α _p	DM	$\frac{S_{400}}{(mJv)}$	S ₆₀₀ (mJy)	S 7 0 0 (mJy)	S 1 4 0 0 (mJy)	S 1 6 0 0 (mJy)	S _{3 0 0 0} (mJy)
		(1115)			(110))	(1110))	(110))	(1110))	(1110))	(1110 y)
J0437-4715	5.8	0.141	1.1	2.6	550	600	406	149	115	32
J0613-0200	3.06	0.462	1.8	38	20	7.3	7.2	2.3	2.0	0.42
J1024-0719	5.16	0.521	1.9	6.5	4.6	4.2	5.4	1.5	0.88	0.37
J1713+0747	4.5	0.11	1.4	16	36		8.9	10.2		2.74
J1744-1134	4.08	0.137	1.8	3	18	16	7.8	3.1	1.7	0.7
J1824-2452A	3.0	0.98		120	40		10.6	2.0		0.33
J1909-3744	2.95	0.044	1.5	10.4			6.1	2.1		0.77
B1937+21	1.6	0.038		71	240		63	13.2		1.55

Empirical Pulsar Spectra

- 1. Determination of space-time locations, background
- 2. Radio pulsar TOA measurement principles
- 3. Radio Noise Background
- 4. Pulsar Spectrum
- 5. Pulse widths and Radio Frequency: Dispersion, Scattering, Jitter
- 6. Properties of real timing pulsars
- 7. Optimal receiver frequency and antenna sizes
- 8. Phased Array Antennas and the number of receiving elements
- 9. Data processing requirements: coherent de-dispersion
- 10. Summary and conclusions

TOA precision for selected pulsars using a small antenna

Black: average using J1909-3744, B1937+21, J0437-4715 and J1713+0747

Min. σ_t =3.2µs for η =0.25 v=538 MHz Δv =134.5 MHz σ_t =2.9µs for η =0.5 v=543 MHz Δv =271 MHz \rightarrow no advantage for high η

 $A_{min}=166 \text{ m}^2 \text{ r}_{min}=14.5 \text{ m} \eta=0.25$ $A_{min}=151 \text{ m}^2 \text{ r}_{min}=13.8 \text{ m} \eta=0.5$ $G=\frac{A_{min}}{A_{iso}}=6780 \text{ or } 37 \text{ dBi} \text{ , } \text{ HPBW ca. 1.3°}$

- 1. Determination of space-time locations, background
- 2. Radio pulsar TOA measurement principles
- 3. Radio Noise Background
- 4. Pulsar Spectrum
- 5. Pulse widths and Radio Frequency: Dispersion, Scattering, Jitter
- 6. Properties of real timing pulsars
- 7. Optimal receiver frequency and antenna sizes
- 8. Phased Array Antennas and the number of receiving elements
- 9. Data processing requirements: coherent de-dispersion
- 10. Summary and conclusions

Antenna design considerations

- Antenna with d=15 m is large, but feasible (Voyager d=3.7m, RadioAstron d=10m)
- Antenna size and weight is determined by radio flux of pulsars should be optimised by good knowledge of pulsar spectrum in 300-1000 MHz regime.
- Operation on 500 MHz with narrow bandwidth allows for larger surface tolerances: λ/8 ≈ 7 cm. and light weight construction (wire mesh, printed foil)
- 1° Beam needs optical attitude control (e.g. using guide stars)
- Parabolic dish points to only one source at a time, needs frequent movement, requires power and reaction mass, reliable long term operation questionable

→ Alternative:

phased array antenna can have several beams and is less restricted in shape

Voyager (NASA/JPL)

SpectR/RadioAstron (Lebedev AstroSpace Centre)

150 MHz "Mammut Hoarding radar" 1944 (US War Department - TM E 11-219)

RADARSAT-1 with 15 m phased array antenna (CSA)

Phased Array Antennas

- Well established technology
- Allow large light weight constructions
- Elements can be printed
- Several simultaneous beams
- Used for satellites and space probes
 and radio astronomy (LOFAR, MWA)

101.2 mm

(Zicher et al. 2013)

dicrostrip-Sk

Transitio

(Reichart 2005)

Coaxial-Microstrip Transition Region

MWA 32T Tile 80-300 MHz (Natasha Hurley-Walker)

Minimum Number of Array Elements

- 1. Determination of space-time locations, background
- 2. Radio pulsar TOA measurement principles
- 3. Radio Noise Background
- 4. Pulsar Spectrum
- 5. Pulse widths and Radio Frequency: Dispersion, Scattering, Jitter
- 6. Properties of real timing pulsars
- 7. Optimal receiver frequency and antenna sizes
- 8. Phased Array Antennas and the number of receiving elements
- 9. Data processing requirements: coherent de-dispersion
- 10. Summary and conclusions

Incoherent and Coherent De-Dispersion

• Residual filter dispersion: detected output from a filterbank will be broadened:

$$\delta t \cong 2 \cdot D \cdot DM \cdot \frac{\eta}{\nu^2}$$

With $\delta t=2\mu s$, DM=71, v=540 MHz $\rightarrow \eta=10^{-6} \text{ or } 2.5 \cdot 10^5 \text{ filter channels: } \delta v=540 \text{ Hz}$

- Filter response: limited $\delta t > \delta v^{-1} \approx 2 \text{ ms!}$
- \bullet Minimum depends only on ν and DM :

$$\delta t_{\min} = (2 \text{ D} \cdot \text{DM})^{\frac{1}{2}} \text{ v}^{-\frac{3}{2}} \approx 61 \mu \text{s}$$

Alternative: Coherent de-dispersion (Hankins & Rickett 1975)

Apply an all-pass filter compensating frequency and DM dependent time delays to sampled rf amplitudes before detection.

- → Requires dedicated programmable filters and detectors for each source stream.
- → Technical implementation around 1990 (D. Backer)

Coherent De-Dispersion: The Effelsberg-Berkeley-Pulsar Processor (EBPP)

Developed in Berkeley by Don Backer et. al.

Data Processing Requirements

•Antenna output needs to be converted to baseband and digitised.

•Data rate $2\Delta v \approx 300-600$ Ms/s per output

- → hardware beam forming and combining of the two polarisations
- •Total sustained data rate 1-2 Gs/s

•Major work load from **coherent de-dispersion**, but can be realised in hardware.

•Power requirements ca. 200-300 W

•Autonomous navigation of satellites using radio pulsars is feasible with current technology

•It can be advantageous for large deep-space probes

•The Optimal receiver frequency is in the UHF band and increases for higher position accuracy

•A Bandwidth of < 150 MHz is sufficient, wide-band systems have no net advantage

•Minimum antenna diameter > 12m, grows with accuracy and frequency

•Phased array antennas with 3000-4000 simple printed or wire dipoles may be used

•Beam forming of \geq 4 beams in hardware within antenna structure is needed

•Coherent de-dispersion of 300 Ms/s data stream per beam dominates data processing

•Careful consideration of the spectrum of the chosen pulsar beacons and their local radio background is required before designing a realistic space navigation system

Literature

Downs, G. S., "Interplanetary Navigation Using Pulsating Radio Sources," NASA Technical Reports N74-34150, pp. 1-12 (1974,)

Suneel I. Sheikh and Darryll J. Pines, "Recursive Estimation of Spacecraft Position Using X-ray Pulsar Time of Arrival Measurements", Proceedings of the ION 61st Annual Meeting, The MITRE Corporation & Draper Laboratory, 27-29 June 2005, Cambridge, MA

Sheikh, S.I. University of Maryland Ph.D. dissertation "The Use of Variable X-ray Sources for Spacecraft Navigation"

Chester, T., Butman, S., 1981. Navigation using X-ray pulsars. Jet Propulsion Laboratory, Pasadena, CA, NASA Tech. Rep. 81N27129. Hanson, J. Principles of X-ray Navigation. Technical Report. Stanford Linear Accelerator Center (SLAC, 1996.)

Hanson, J. E., "Principles of X-ray Navigation," Doctoral Dissertation, Stanford University, (1996) URL: http://il.proquest.com/products_umi/dissertations/

P. H. Graven, J. T. Collins, S. I. Sheikh, J. E. Hanson, SPACECRAFT NAVIGATION USING X-RAY PULSARS, Proc. of the 7TH INTERNATIONAL ESA CONFERENCE ON GUIDANCE, NAVIGATION & CONTROL SYSTEMS 2-5 JUNE 2008, TRALEE, COUNTY KERRY, IRELAND

X. P. Deng, G. Hobbs, et al. "Interplanetary spacecraft navigation using pulsars", arXiv:1307.5375v1 (2013)

W. Becker, M. G. Bernhardt, A. Jessner, "Autonomous Spacecraft Navigation With Pulsars", arXiv:1305.4842v1 [astro-ph.HE] (2013)

Literature cont.

Cordes, J.M., Shannon, "A Measurement Model for Precision Pulsar Timing ", (xarxiv:1010.3785v1, 2010) Hagen, Appl. Optics, 46(22), 5374-5383, (2007)

Dicke, R.H, "The Measurement of Thermal Radiation at Microwave Frequencies", Rev. Sci. Instr., 17,7 (1946)

ATNF Pulsar Catalog" by R.N. Manchester et al., at <u>http://www.atnf.csiro.au/research/pulsar/psrcat/</u>

Cane MNRAS, 189,465 (1979)

Ellington, IEEE Trans on Antennas and Propagation, 53, No. 8, 2480, (2005)

Bhat, N. D. R. et al. ApJ, 605, 759 (2004)

R. Zichner and R. R. Baumann, Printed antennas: from theory to praxis, challenges and applications, Adv. Radio Sci., 11, 271–276, (2013)

Stephen Reichart, A broadband VHF-L Band cavity backed slot spiral antenna, AFRL-IF-RS-TR-2005-169, Final Technical Report, University of Michigan (2005)

D. Lorimer, M. Kramer, ,Handbook of Pulsar Astronomy', Chapter 5.3, Cambridge University Press, (2005)

D.B. Backer et al. PASP, 109, 61 (1997)